An Eulerian-Lagrangian approach to the Navier-Stokes equations
نویسنده
چکیده
We present a formulation of the incompressible viscous Navier-Stokes equation based on a generalization of the inviscid Weber formula, in terms of a diffusive “back-to-labels” map and a virtual velocity. We derive a generalization of the inviscid Cauchy formula and obtain certain bounds for the objects introduced.
منابع مشابه
Lagrangian Approximations and Weak Solutions of the Navier-Stokes Equations
The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian re...
متن کاملArbitrary Lagrangian Eulerian Analysis of a Bidirectional Micro-Pump Using Spectral Elements
Performance analysis of a reversible micro-pump system is obtained by numerical simulations. The unsteady incompressible Navier–Stokes equations are solved in a moving micro-pump system using a spectral h/p element algorithm, employing an arbitrary Lagrangian Eulerian (ALE) formulation on structured/unstructured meshes. The performance of the micro-pump is evaluated as a function of the Reynold...
متن کاملImplicit Surface Tension Formulation with a Lagrangian Surface mesh on an Eulerian Simulation Grid
We present a method for applying implicit forces on a Lagrangian mesh to an Eulerian discretization of the Navier Stokes equations in a way that produces a sparse symmetric positive definite system. The resulting method has implicit and fully coupled viscosity, pressure, and Lagrangian forces. We apply our new framework for forces on a Lagrangian mesh to the case of surface tension force, which...
متن کاملOutput-based mesh adaptation for high order Navier-Stokes simulations on deformable domains
We present an output-based mesh adaptation strategy for Navier-Stokes simulations on deforming domains. The equations are solved with an arbitrary Lagrangian-Eulerian (ALE) approach, using a discontinuous Galerkin finiteelement discretization in both space and time. Discrete unsteady adjoint solutions, derived for both the state and the geometric conservation law, provide output error estimates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000